Problem
mean
The mean tool computes the arithmetic mean along the specified axis.
import numpymy_array = numpy.array([ [1, 2], [3, 4] ])print numpy.mean(my_array, axis = 0) #Output : [ 2. 3.]print numpy.mean(my_array, axis = 1) #Output : [ 1.5 3.5]print numpy.mean(my_array, axis = None) #Output : 2.5print numpy.mean(my_array) #Output : 2.5
By default, the axis is None
. Therefore, it computes the mean of the flattened array.
var
The var tool computes the arithmetic variance along the specified axis.
import numpymy_array = numpy.array([ [1, 2], [3, 4] ])print numpy.var(my_array, axis = 0) #Output : [ 1. 1.]print numpy.var(my_array, axis = 1) #Output : [ 0.25 0.25]print numpy.var(my_array, axis = None) #Output : 1.25print numpy.var(my_array) #Output : 1.25
By default, the axis is None
. Therefore, it computes the variance of the flattened array.
std
The std tool computes the arithmetic standard deviation along the specified axis.
import numpymy_array = numpy.array([ [1, 2], [3, 4] ])print numpy.std(my_array, axis = 0) #Output : [ 1. 1.]print numpy.std(my_array, axis = 1) #Output : [ 0.5 0.5]print numpy.std(my_array, axis = None) #Output : 1.11803398875print numpy.std(my_array) #Output : 1.11803398875
By default, the axis is None
. Therefore, it computes the standard deviation of the flattened array.
Task
You are given a 2-D array of size NXM.
Your task is to find:
- The mean along axis 1
- The var along axis 0
- The std along axis None
Input Format
The first line contains the space separated values of N and M.
The next N lines contains M space separated integers.
Output Format
First, print the mean.
Second, print the var.
Third, print the std.
Sample Input
2 21 23 4
Sample Output
[ 1.5 3.5][ 1. 1.]1.11803398875
Solution – Mean, Var, and Std In Python | HackerRank
import numpy as npn, m = list(map(int, input().split()))a = np.array([list(map(int, input().split())) for _ in range(n)])print(np.mean(a, axis=1))print(np.var(a, axis=0))print(round(np.std(a, axis=None), 11))
Comments
Post a Comment