Problem
min
The tool min returns the minimum value along a given axis.
import numpymy_array = numpy.array([[2, 5], [3, 7], [1, 3], [4, 0]])print numpy.min(my_array, axis = 0) #Output : [1 0]print numpy.min(my_array, axis = 1) #Output : [2 3 1 0]print numpy.min(my_array, axis = None) #Output : 0print numpy.min(my_array) #Output : 0
By default, the axis value is None
. Therefore, it finds the minimum over all the dimensions of the input array.
max
The tool max returns the maximum value along a given axis.
import numpymy_array = numpy.array([[2, 5], [3, 7], [1, 3], [4, 0]])print numpy.max(my_array, axis = 0) #Output : [4 7]print numpy.max(my_array, axis = 1) #Output : [5 7 3 4]print numpy.max(my_array, axis = None) #Output : 7print numpy.max(my_array) #Output : 7
By default, the axis value is None
. Therefore, it finds the maximum over all the dimensions of the input array.
Task
You are given a 2-D array with dimensions NXM.
Your task is to perform the min function over axis 1 and then find the max of that.
Input Format
The first line of input contains the space separated values of N and M.
The next N lines contains M space separated integers.
Output Format
Compute the min along axis 1 and then print the max of that result.
Sample Input
4 22 53 71 34 0
Sample Output
3
Explanation
The min along axis 1 = [2, 3, 1, 0]
The max of [2, 3, 1, 0] = 3
Solution – Min and Max In Python | HackerRank
import numpy as npn, m = list(map(int, input().split()))lst = np.array([list(map(int, input().split())) for _ in range(n)])b = np.min(lst, axis=1)print(np.max(b))
Comments
Post a Comment